<track id="w605y"><table id="w605y"></table></track>
  • <ins id="w605y"></ins>
  • <noscript id="w605y"></noscript>

  • <sup id="w605y"><track id="w605y"></track></sup>
    <tr id="w605y"></tr>
    <output id="w605y"><nobr id="w605y"></nobr></output>

      1. <tr id="w605y"><small id="w605y"><option id="w605y"></option></small></tr><ins id="w605y"><option id="w605y"></option></ins>
        1. <output id="w605y"></output>
          1. <ins id="w605y"></ins>
            <ins id="w605y"><video id="w605y"></video></ins>
              <tr id="w605y"></tr>

              <tr id="w605y"><small id="w605y"><delect id="w605y"></delect></small></tr>
              <sup id="w605y"><small id="w605y"><delect id="w605y"></delect></small></sup>
              <small id="w605y"></small>
              <tr id="w605y"></tr>

              1. <tr id="w605y"></tr>
                  <small id="w605y"></small>
                1. <noscript id="w605y"><nobr id="w605y"><option id="w605y"></option></nobr></noscript>

                      <tr id="w605y"><small id="w605y"><delect id="w605y"></delect></small></tr>
                      <sup id="w605y"><small id="w605y"><delect id="w605y"></delect></small></sup>
                      基于EMD分解的聚類樹狀圖軸承故障診斷
                      張梅軍,韓思晨,王闖,焦志鑫
                      (解放軍理工大學 工程兵工程學院,江蘇 南京 210007)
                      摘要:針對滾動軸承故障振動信號的非平穩特征和故障征兆模糊性,提出了基于EMD和動態模糊聚類圖的軸承故障診斷方法。運用EMD方法提取待診斷的軸承運行狀態樣本的能量特征指標,應用模糊聚類分析方法對特征參數進行聚類,并作出聚類樹狀圖。結果表明,該方法不需要大量的樣本進行學習,且能更直觀、準確識別滾動軸承的運行狀態。
                      關鍵詞:EMD分解;動態模糊聚類圖;故障診斷
                      中圖分類號:O242.21        文獻標識碼:A         文章編號:10060316 (2012) 07000104
                      Clustering based on EMD decomposition tree bearing fault diagnosis
                      ZHANG Mei-jun,HAN Si-chen,WANG Chuang,JIAO Zhi-xin
                      (Engineering Institute of Engineering Corps,PLA University of Science,Nanjing 210007,China)
                      Abstract:For the non-stationary feature of a vibration signal of defective rolling bearings and the ambiguity of fault feature, a fault diagnosis method of rolling bearings is proposed using EMD ( Empirical Mode Decomposition ), Dynamic fuzzy clustering graph. Firstly, an EMD method was used to decompose a vibration signal of a rolling bearing. Then those parameters were analyzed by fuzzy clustering algorithm, and plotted amic fuzzy clustering graph. Experiments indicated that This method does not require a large number of samples for learning, and And can more intuitivelt, accurately distinguish the running state of bearings.
                      Key wordsemp iricalmode decomposition ( EMD );dynamic fuzzy clustering graph;fault diagnosis

                      ———————————————
                      收稿日期:2011-02-29
                      基金項目:國家自然科學基金資助項目(51175511)
                      作者簡介:張梅軍(1958-),女,江蘇宜興人,副教授,碩士生導師,主要研究方向為故障診斷和工程機械動力學。

                       

                      設為首頁  |  加入收藏    |   免責條款
                      《機械》雜志版權所有     Copyright©2008-2012 www.cthsct.com All Rights Reserved 

                        電話:028-85925070    傳真:028-85925073    E-mail:jixie@vip.163.com

                      地址:四川省成都錦江工業開發區墨香路48號   郵編:610063

                      蜀ICP備08103512號

                      Powered by PageAdmin CMS
                      国产精品国产三级国产普通话